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Before going in....

Towards application of graph neural networks

Towards efficient graph learning Explainable graph neural networks

Fundamental topics on graph neural networks

On the representational power of graph neural networks A graph signal processing viewpoint of graph neural networks

From label propagation to graph neural networks On the problem of oversmoothing and oversquashing

Introduction to graph mining and graph neural networks
(Basic overview to kick things off)

* Presentation slides are available at:

Ir.
B I:III L .
(jordan7186.github.io/presentations/) |m -




1.  Understanding general concept of explainable Al: Why & How?
2. A general understanding of explainable Al in graph learning
3. Subtopic: Explaining GNNs with attetntion



Understanding the concepts of explainable Al

The early ‘why’ part was based on the content from
Samek & Miiller: Towards Explainable Artificial Intelligence. Explainable Al 2019: 5-22



Why is interpretation an important question?

Generally, neural-network models are considered as ’black-box’ models

1. Model weights are difficult to understand by humans.

[1]: “..due to their nested non-linear structure, these powerful models have been generally
considered “black boxes”.”

o

[2]: “These rules [model weights], because they're generated by the algorithm, can run counter
to human intuition and be difficult, if not impossible, to decipher”




Why is interpretation an important question?

XAl becomes more critical in serious applications.

2. Interpretation brings trust and reliability to the table

Legal Al [1] ST TTTTTTTT RN
- Judgement prediction { Wrong legal :
- Similar-case matching I consequences I
- Text-summarization : i 0
! Q
: _— = Need transparent
— ; . 98 model
Autonomous dnvmg [2_] ifgone ! ' 53
- Perception and Localization | wrong Potentially life- : o5 High standard of
Deep - High-level path planning » | threatening accident | T » trust
learning - Motion control ! : 3 &
: - Assigning
! : 3 reliability possible
Healthcare [3] If ; : Ro
gone
- Medical imaging wrong | Bad medical !
- Electronic health records » | procedures with !
- Robot-assisted surgery \ severe consequences !

1] Zhong, Haoxi, Chaojun Xiao, Cunchao Tu, Tianyang Zhang, Zhiyuan Liu, and Maosong Sun. "How Does NLP Benefit Legal System: A Summary of Legal Artificial Intelligence." arXiv preprint arXiv:2004.12158 (2020).
2] Grigorescu, Sorin, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. "A survey of deep learning techniques for autonomous driving." Journal of Field Robotics 37, no. 3 (2020): 362-386.

3] Esteva, Andre, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov, Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and Jeff Dean. "A guide to deep learning in healthcare."
Nature medicine 25, no. 1(2019): 24-29.
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Why is interpretation an important question?

Model explanation as model debugging

3. We can identify when the model is correct for the wrong reasons.

Avoiding ‘Clever Hans’ predictions

« Some models are later found that the models did not make the
predictions for the right reasons, although their performance
has reached SOTA [1].

* Increasing explanability helps to unmask these undesired
J \ properties, and potentially guide us to understand the
weakness of the model.

Original Image . Staindarﬂd'LRP

An example of the clever hans effect of a trained model [2]

[1] Lapuschkin, Sebastian, Stephan Waldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, and Klaus-Robert Miller. "Unmasking clever hans predictors and assessing what machines really learn." Nature
communications 10, no. 1(2019): 1-8.

[2] Kirill Bykov, Marina M.-C. Hohne, Klaus-Robert Miiller, Shinichi Nakajima, Marius Kloft. “How Much Can | Trust You? - Quantifying Uncertainties in Explaining Neural Networks.” arXiv prepring abs/2006.09000
(2020)



A general overview on the types of XAl methods [1]

<input
relations

Behavioral Attributional Concept-based Mechanistic

[1] Bereska & Gavves, “Mechanistic interpretability or Al safety: A review”, arXiv 2024



A general overview on the types of XAl methods [1]

A < input

\ 4 - Example: Shapley value-based explanations

relations * Only interested in input-output relations

f( ) — « Treats the model as a complete black-box

« Main limitation: Exponential computation & How to
f(A’ ) =% express the absence of a feature?
« Many approaches are designed to approximate this

. <« output « ex. KernelSHAP
Behavioral

[1] Bereska & Gavves, “Mechanistic interpretability or Al safety: A review”, arXiv 2024



*Basic concept of Shapley values by a glove-selling game

The rules & setting of selling gloves

The gloves are $1 each.
They must be sold in pairs.
Person A has 9 gloves.
Person B has 3 gloves.

S YR

4

No A noB

o ﬁ o o
A noB A&B

This wonderful example is from the talk "TrustML Seminar: Suresh Venkatasubramanian on "The limits of Shapley values” from Prof. Suresh Venkatasubramanian @ Brown University.



*Basic concept of Shapley values by a glove-selling game

The rules & setting of selling gloves

The gloves are $1 each.
They must be sold in pairs.
Person A has 9 gloves.
Person B has 3 gloves.
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This wonderful example is from the talk "TrustML Seminar: Suresh Venkatasubramanian on "The limits of Shapley values” from Prof. Suresh Venkatasubramanian @ Brown University.



*Basic concept of Shapley values by a glove-selling game

The rules & setting of selling gloves

The gloves are $1 each.
They must be sold in pairs.
Person A has 9 gloves.
Person B has 3 gloves.
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This wonderful example is from the talk "TrustML Seminar: Suresh Venkatasubramanian on "The limits of Shapley values” from Prof. Suresh Venkatasubramanian @ Brown University.



*Basic concept of Shapley values by a glove-selling game

The rules & setting of selling gloves

The gloves are $1 each.
They must be sold in pairs.
Person A has 9 gloves.
Person B has 3 gloves.
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This wonderful example is from the talk "TrustML Seminar: Suresh Venkatasubramanian on "The limits of Shapley values” from Prof. Suresh Venkatasubramanian @ Brown University.



*Basic concept of Shapley values by a glove-selling game

The rules & setting of selling gloves

The gloves are $1 each.
They must be sold in pairs.
Person A has 9 gloves.
Person B has 3 gloves.

S YR
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v({A}) =8 —— v({4,B}) = 12

This wonderful example is from the talk "TrustML Seminar: Suresh Venkatasubramanian on "The limits of Shapley values” from Prof. Suresh Venkatasubramanian @ Brown University.



*Basic concept of Shapley values by a glove-selling game

What is the overall contribution of each player?
+2
V(D) =0 > v({B}) =2

8 l l +10

v({A}) =8 —— v({4A,B}) = 12

« As an example, concentrate on A.

A contributes +8 when there are no one.

« A contributes +10 when there is B.

« How do we determine A's contribution overall?

« Take the average for all cases.

This wonderful example is from the talk "TrustML Seminar: Suresh Venkatasubramanian on "The limits of Shapley values” from Prof. Suresh Venkatasubramanian @ Brown University.



*Basic concept of Shapley values by a glove-selling game

What is the overall contribution of each player?

v(@) =0 = — v({B}) =2

A, (B, 2)
A (A, @) + l l 10 Ay(A, {B))
Al) = A B}) =12
o({A}) =8 o o({A, BY) =
bu(A) = A, (A, 2) +2AU(A, 1BY) _
oo (B) = 2(B:2) +2AU(B, Ah _

This wonderful example is from the talk "TrustML Seminar: Suresh Venkatasubraman n "The limits of Shapley values” from Prof. Suresh Venkatasubramanian @ Brown University.



*Basic concept of Shapley values by a glove-selling game

What is the overall contribution of each player?

Lo SN =S =D o
¢U(Z) - S;N |N" A’U(Z?S)

INEls™)

Marginal contribution A\, (7:7 P?T[i’i]>

Do(i) = % 3" (P U {ij’) — 0(Prp)

\ Subset of players preceding player i

All possible permutations of N players

Some material from the slides from “Tony” Runzhe Yang, “Shapley values, attention flows, and faithful explanations”



A general overview on the types of XAl methods [1]

Most XAl works (especially early works) fall into this category.

gradients « “How much can we attribute the output back to the input?”
« Tend to be highly heuristic (exceptions include Integrated Gradients &
ﬁ —1 Deep Taylor Decomposition)
oA Lot of “Sanity check” work exposes this limitation (Refer to, for
0* example, [2])
“~_n « For graphs, GNNExplainer-types belongs to this category
0 « How much of the explanation generated from the XAl method is
from the model vs. from the XAl method? (see [3] for similar
Attributional argument)

[1] Bereska & Gavves, “Mechanistic interpretability or Al safety: A review”, arXiv 2024
[2] Adebayo et al., “Sanity Checks for Saliency Maps”, NeurIPS 2018 (+2000 citations)
[3] Miao et al., “Interpretable and generalizable graph learning via stochastic attention mechanism”, ICML 2022



*Well-known classical approaches in attributional methods

Sensitivity analysis (SA) [1]

Consider a neural network where the input is an image and the task is image classification.

input

[HITHE > oot 2
/ o @) (evidence for "boat")

For example, prediction scores
explanation R(z) w

We can generate an “explanation” of the prediction as a form of heatmap.
In sensitivity analysis, the pixel-wise value of the heatmap is the derivative of the score with respect to the image.

of
e

* Note that this is easily acquired via back-propagation via modern machine learning libraries
* Also, SA provides explanation of the variation of the function, not the function itself [2].
* Known to be vulnerable to ‘shattered gradient’ [3], where the gradients in standard feedforward networks increasingly resemble white noise.

Rilx) = (

[1 Montavon, Grégoire, Wojciech Samek, and Klaus-Robert Miiller. "Methods for interpreting and understanding deep neural networks." Digital Signal Processing 73 (2018): 1-15. (The image is also from the paper.)
[2] Wkjciech Samek, Gregoire Montavon, and Klaus-Robert Miller. “Tutorial on Interpreting and Explaining Deep Models in Computer Vision”. In CVPR 2018.

[3] Balduzzi, David, Marcus Frean, Lennox Leary, J. P. Lewis, Kurt Wan-Duo Ma, and Brian McWilliams. "The shattered gradients problem: If resnets are the answer, then what is the question?." arXiv preprint
arXiv:1702.08591 (2017).



*Well-known classical approaches in attributional methods

Layer-wise Relevance Propagation (LRP) [1,2]
Positive weights

Negative weights

Value of weights are
proportional to edge opacity

f

>  Output f(x): prediction score

L4

. < N
Input x: image ——
Feed forward process

\

C

I

Output score becomes
the total relevance score

J

Heatmap of R(l)(x) < - /'Q Total relavance Ry(x)
relevance scores Distribution of relevance

scores back to input

~——

I\

[1] Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller, and Wojciech Samek. "On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance

propagation." PloS one 10, no. 7 (2015): e0130140.
[2] Binder, Alexander, Sebastian Bach, Gregoire Montavon, Klaus-Robert Miiller, and Wojciech Samek. "Layer-wise relevance propagation for deep neural network architectures." In Information Science and

Applications (ICISA) 2016, pp. 913-922. Springer, Singapore, 2016.



*Well-known classical approaches in attributional methods

Layer-wise Relevance Propagation (LRP) [1,2]

Positive weights

Negative weights

Value of weights are
proportional to edge opacity

=
RO(x) %1%/0

Total relavance Ry (x)

I’iwij

Ry

= z]: Do wirwy;

normalization

The relevance scores are
distributed proportional to the
neurons’ activation during feed-
forwarding.

E :Rlayerl _ E :Rlayer2 _ Rf As a result, the total sum of
relevance scores are preserved

i for all layers.

RM(x) Cotal relavance Ry(x)
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[1] Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller, and Wojciech Samek. "On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance

propagation." PloS one 10, no. 7 (2015): e0130140.
[2] Binder, Alexander, Sebastian Bach, Gregoire Montavon, Klaus-Robert Miiller, and Wojciech Samek. "Layer-wise relevance propagation for deep neural network architectures." In Information Science and

Applications (ICISA) 2016, pp. 913-922. Springer, Singapore, 2016.



*Well-known classical approaches in attributional methods

Layer-wise Relevance Propagation (LRP) [1,2]

Feed-forward
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[1] Bach, Sebastian, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller, and Wojciech Samek. "On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation." PloS one 10, no. 7 (2015): e0130140.

[2] Binder, Alexander, Sebastian Bach, Gregoire Montavon, Klaus-Robert Miiller, and Wojciech Samek. "Layer-wise relevance propagation for deep neural network architectures." In Information Science and
Applications (ICISA) 2016, pp. 913-922. Springer, Singapore, 2016.



A general overview on the types of XAl methods [1]

probes

g oac
*

Concept-based

Learns a method to extract explainable information from the
internal representations

Works include learning a probe with some unsupervised loss

For graphs, PAGE [2] also directly utilizes the node & graph level
representations.

However, the concept-based method cannot escape the previous
criticism: Does it really explain the model? How much is the
explanation from the explanation method itself?

[1] Bereska & Gavves, “Mechanistic interpretability or Al safety: A review”, arXiv 2024
[2] Shin et al., “PAGE: Prototype-based model-level explanations for graph neural networks”, PAMI (2024)



A general overview on the types of XAl methods [1]

Hypothesis of Mechanistic Interpretability
* Models learn human-comprehensible algorithms and can be understood.
« They are not comprehensible by default, and we need to do some work to
make it legible.

« A(relatively new) sub-field of interpretability
« Mechantistic interpretability is done by...
« Rigorous (and almost surgical) observations of the model ‘without tricking ourselves’
« Most works are case studies, and does not know what it would find at the start of the
investigation. Most discoveries is the authors ‘noticing common trends’
« Since they are case studies, Transformers [2] are typically the model of interest
« @Goal: Reverse engineer neural networks

(Analogy: Binary of a program — Source code? [3])

(" Task Data h ( 1. Train \ r 2. Sample \ ( 3. Decompile \
head_0_0 = [None] * len(tokens) # annotate code
Input Target for 1 in range(len(tokens)):
if pos[il in {0, 4}:
M L] t. a '1 b 2 b 2 a 1 headl;_;)[i] z ;rarO[S]
elif pos[i] in {1}: — )_/‘ use debugger
head0_0[i] = var0[0]
ec' 1aNnISticC b3c4adc 4 | - | e pestil in 3
C] head0_0[i] = varO[i]
- elif pos[i] in {3}: & .
d2c4a2b unk relaxed discrete hesd0_0[1] = varoLz] aut(l)ma'g ic
\_ ) Transformer Program Transformer Program Python program anatysis

Figure 1: We design a modified Transformer that can be trained on data and then automatically
discretized and converted into a human-readable program. The program is functionally identifical to
the Transformer, but easier to understand—for example, using an off-the-shelf Python debugger.

[1] Bereska & Gavves, “Mechanistic interpretability or Al safety: A review”, arXiv 2024

[2] Vaswani et al., “Attention is all you need”, NeurlIPS 2017

(Bottom right figure) [3] Friedman et al., “Learning transformer programs”, NeurlPS 2024 (Oral)

*A bulk of the content of this slide is from Neel Nanda’s talk “Open Problems in Mechanistic Interpretability: A Whirlwind Tour | Neel Nanda | EAGxVirtual 2023” on Youtube.



*The most famous discovery in Mech. Interp.: Induction

out about the Potters. Mrs Potter was ... neighbours would say if the Pot arrived in
attention pattern moves information f’logit effect
out about the Pot . Mrs Potter was ... neighbours would say if the Plotters arrived in
key Lquery
out about the ters. Mrs Potter was ... neighbours would say if the ters arrived in

ters 4. And assigns high logit value to that token

TOutput (logit)

Induction head

K

(o) Residual stream
(attention moves the information)

3. Which is picked up by the
Previous token head induction head as a key vector

A

1. Finds the previous occurrence of the K 2. The next token is outputted
same token by previous token head to the residual stream

por [ “Pot”

(previous) (current)

[1] Olah, et al., "Zoom In: An Introduction to Circuits", Distill, 2020.



An expanded introduction to explaining graph learning
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What does it mean to explain GNN models?

Basic scenario: When to explain? (*Post-hoc explanations)

Training of GNN
Training data (assume that it already
C Loss calculation happened)

Back propagation

After training
has finished...

GNN model (initialized) GNN model (Trained)

Explanation model
(most of the literature)

N
Insert some type of GN

explanation here

*Post-hoc explanations are typical scenarios, not specific to GNN explanations but for all XAl methods.



What does it mean to explain GNN models?

Explaining GNNs mean providing additional information on the decision process in a human-comprehensible way

This implies: HOW to explain is up to the designer’s choice.

Input attribution
(Importance score)

1

Generative Mechanistic
(“The model looks at this pattern for « » (“This attention head is responsible
decision making”) for some model behavior”)
Notable works: XGNN, *PAGE $ Notable work: [EL et al., 2025]

Counterfactuals
(“If the input was some alternative, then the
outcome would have been ...”)
Notable work: CF-GNNEXxplainer

And of course, there may be others...

El et al., Towards Mechanistic Interpretability of Graph Transformers via Attention Graphs, arXiv 2025
*Shin et al., PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks, TPAMI (2024)



Extension: Input attribution of GNN models

What does it mean to explain GNN models via assigning importance scores?

Attribution maps are one of the
most popular ways, especially in CV and NLP.

DTD [Montavon 2017], LRP [Bach 2018], GNNExplainer [Ying 2019],
GradCAM [Selvaraju 2017, ... PGExplainer [Luo 2020)], *FastDnX [Pereira 2023]..

Similar approaches are also
popular in GNN explanations, too.

Computation graph
GNN model

Node class
prediction

(7]

(]

Q.

©

Input image to ResNet Result of GradCAM ‘-,:,
N d I

N ‘ ! A <
N L o

Highlights relevant
pixels

*DnX/FastDnX is more closer to surrogate-based explanations, but it nevertheless produces attribution scores so we will keep it here



Sub-topic: Can we use attention to explain GNNs?

(Shin et al., Faithful and Accurate Self-Attention Attribution for Message Passing Neural Networks via the Computation Tree Viewpoint, AAAI'25)
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Motivation: Un-answered question of attention in the GNN literature

Attention as an explanation has been extensively studied in the CV & NLP literature,
due to their natural interpretation and the universial usage of transformers.

agreement
on
European
Economic
signed

in

August
1992
<end>

Area
was

(]
c
[

the

L
accord

sur

la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

(Bahdanau et al., 2015)

(Chefer et al., 2021)

Chefer et al., “Transformer interpretability beyond attention visualization”, CVPR 2021
Bahdanau et al., Neural machine translation by jointly learning to align and translate, ICLR 2015

Question. How much is attention adequate as explanation?

Attention is not Explanation

Attention is not not Explanation

Is Attention Explanation? An Introduction to the Debate greffer Yuval Pinter”
ve Computing School of Interactive Computing

Adrien Bibal, Rémi Cardon, David Alfter, Rodrigo V
Thomas Francois*and Patrick Wa
CENTAL, IL&C, University of Louvain, ) .
{adrien.bibal, remi.cardon, david.alft, Michael Hassid” Hao Peng®* Daniel Rotem®”  Jungo Kasai® Ivan Montero**
! ! Noah A. Smith*®  Roy Schwartz”
“School of Computer Science & Engineering, Hebrew University of Jerusalem
©Allen Institute for Artificial Intelligence *Apple, Inc.
#Paul G. Allen School of Computer Science & Engineering, University of Washington
{michael.hassid,daniel.rotem,roy.schwartzi}@mail.huji.ac.il
haop@allenai.org {jkasai,nasmith}@cs.washington.edu ivamon@apple.com

How Much Does Attention Actually Attend?
Questioning the Importance of Attention in Pretrained Transformers

thomas.francois,patrick.watrin}@u

Question. How to generate better attention heatmaps in transformers?

Quantifying Attention Flow in Transformers

Samira Abnar Transformer Interpretability Beyond Attention Visualization
ILLC, University of Amsterdam ILLC,
s.abnar@uva.nl w.l

Hila Chefer'  Shir Gur'  Lior Wolf'?
Science, Tel Aviv University

1 Generic Attention-model Explainability for Interpreting Research (FAIR)

Bi-Modal and Encoder-Decoder Transformers

[

Hila Chefer'  Shir Gur!'  Lior Wolf'?
'The School of Computer Science, Tel Aviv University
2Facebook AI Research (FAIR)



Motivation: Un-answered question of attention in the GNN literature

Attention as an explanation also has the natural appeal of being a white-box method,
since we just need to post-process the attention weights

1. Acquire attention weights from the pre-trained model

v
2. Simply apply further calculations

Quantifying Attention Flow in Transformers Generic Attention-model Explainability for Interpreting Transformer Interpretability Beyond Attention Visualization
Bi-Modal and Encoder-Decoder Transformers

Hila Chefer'  Shir Gur'  Lior Wolf'?
Hila Chefer'  Shir Gur!  Lior Wolf'? 'The School of Computer Science, Tel Aviv University
"The School of Computer Science, Tel Aviv University 2Facebook AI Research (FAIR)
2Facebook AI Research (FAIR)

Samira Abnar Willem Zuidema
ILLC, University of Amsterdam ILLC, University of Amsterdam
s.abnar@uva.nl w.h.zuidema@uva.nl

A® = 11 F,A®
rollout = AWM . A@ . . AB)

A® =714 [Eh(VA(b) ® R(nb))+

A =E,(VAORA)Y) C—AW.A® .  .A®B

Note that all calculations are explicit, interpretable, and computed deterministically.

Question: Is there any similar work for graph attention network type models?




Core question

Q1. Are attention explanations for attention-based GNNs?
Q2. What methods have been developed to produce better attribution from attention in GNNs?

...Both questions are not properly answerable, since attention-based GNN models were only used as a naive baseline in the literature.

Node-level tasks

BA-Shapes BA-Community Tree-Grid GNN'XAI eV8|Uat|0n
; (Sanchez-Lengeling et al., 2020)

GCN MPNN GraphNets GAT GCN MPNN GraphNets GAT

Random Baseline 0.27 0.27 0.27 0.38 0.38
Gradinput [T 0.39 0.51 0.5
Example 1) . “...have several blocks and attention heads, so for each

' ‘ © o ' component we take their average to combine them to a scalar

e =~ — B - - - Bl value assigned to each edge.”
Af‘ ion graph i Grad Att Ground Truth B Computation graph GNNEXxplainer Grad Att Ground Truth GNNEXplainer
F ki v{;' \‘*y .‘\4 2 e | g | 1 (Ying et al., NeurIPS 2019)
= 5 "‘?‘f b NO, group 2 : . . . . .
Example2) 3 . * g “...it is not obvious which attention weights need to be used for
cZ 4 o ° g g . ) . .
22 iy 0535{% 3 ;Z; 2o Slagon | 2 edge importance, ... . Each edge’s importance is thus computed
gg o 00 A 000 reactions §? Experts answering . . 2
5 &8 mees=es a5 the average attention weight across all layers.
Explanation AUC
GRAD ()&2 0.750 0.905 2612 0.717 0.783
. .739 .82 . .67+ .765
e — — — T — PGExplainer
GNNExplainer 0925 0336 0.948 0375 0.742 0.727
PGExplainer 0.963+£0.011  0.945£0.019 __ 0.9874£0.007 __ 0.907+£0.014 | 0926+0.021 _ 0.873+0.013 (Luo et a|_’ NeurlPS 2020)
Improve 4.1% 13.0% 4.1% 3.7% 24.7% 11.5%
Example 3) . « . . . L .
_ Inference Time (ms) Each edge’s importance is obtained by averaging its attention
GNNExplainer ~ 650.60 696.61 690.13 713.40 934.72 409.98 . . ’
ZGFxp[aillcr 10.92 23.07 6.36 6.72 x<:13 9,:)8 WelghtS across a” attentlon Iayers.
peed-up 59x 29x 108x 106x 12x 42x

Problem: Can we calculate a more faithful and accurate explanation using attention weights from graph attention network types?

Sanchez-Lengeling et al., “Evaluating Attribution for Graph Neural Networks,” NeurlPS 2020
Ying et al., “GNNExplainer: Generating Explanations for Graph Neural Networks,” NeurlPS 2019
Luo et al., “Parameterized Explainer for Graph Neural Network”, NeurlPS 2020



Our solution: Switch to the computation tree viewpoint!

We found that attention weights reliably represent edge importance
after post-calculations based on the computation tree.

What is a ‘computation tree’? Target node

Target node
Target node
Target node C{K'

1 layer GNN 2 layer GNN 3 layer GNN

Direction of
computation

Input graph

Computation tree of the target node with different GNN layers

Representation _
of node u hu _qb Xus @ w(XUﬂXU) . . s
N * Due to the aggregation-based design of GNNSs, it is often
VEN beneficial to visualize how the information flows as a

@: Permutation invariant operator (e.g., sum) computation tree.
¢: Combine function (e.g., small neural network)

y: Message function (e.g., scaling function)

N.: Set of neighbors of node u



Our solution: Switch to the computation tree viewpoint!

Previous naive
approaches

AVG (

)

We found that attention weights reliably represent edge importance
after post-calculations based on the computation tree.

Input graph Qur perspective
y .9
Self-attention MPNN (e.g., GAT) QP?“

PERNEOOODNOBO®G®

Computation tree for node 27

"n

Attention (layer 1) Attention (layer 2)

- Direction of computation: Leaf nodes to root node (target

10

0.8

0.6

ro.d

ro.2

L0.0

node)
\1, - The colors represent corresponding attention weights
- Note that this is a different viewpoint of the same model, and
Output we did not change the GNN model at all (just change in
(prediction) viewpoint)

Change in perspective: Attention matrix viewpoint = Computation tree viewpoint




Our solution: Switch to the computation tree viewpoint!

We found that attention weights reliably represent edge importance
after post-calculations based on the computation tree.

Two design principles: Summation and adjustment

2-hop neighbor of node 27 Computation tree for node 27
’ 1.0
r0.6

r0.4

r0.2
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Two observations

* Proximity effect: Edges can appear multiple times, and (likely to be) related with proximity.

* Contribution adjustment: The contribution of an edge in the computation tree should be adjusted by its position.



Our solution: Switch to the computation tree viewpoint!

We found that attention weights reliably represent edge importance
after post-calculations based on the computation tree.

Two design principles: Summation and adjustment

2-hop neighbor of node 27 Computation tree for node 27
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Design philosophy of GAtt from our observations

* Proximity effect: Need to sum all occurances of an edge! (Averaging will offset the number of appearances)

* Contribution adjustment: Each attention should be multiplied by all attention weights along the path towards the root.

Attribution of edge (40, 27) .
when target node is 27 B 1 + 3(x|2




Experimental results (Evauation metrics)

Faithfulness and Accuracy

Faithfulness: How much does the edge attribution truly Accuracy:. How much does the edge attribution highlight
reflect the model’s behavior? ground-truth explanations?
Edge manipulation
\\
d.@ @‘y Edge attribution
J J " @
GAT model GAT model
Compare 1
r-—=-=-=-"="="="="="="==-"=-"="=""="===-=="======== 1
' Output Output’ :

Difference (Output — Output’)

!

Measure correlation with original Ground-truth
edge attribution score explanation

Intuition: If the edge was truly important, the model
should drastrically change its output when deleted.



Experimental results (Faithfulness)

Faithfulness experiments on real-world datasets shows the superiority of our method

2-layer GAT/GATV2

3-layer GAT/GATV2

Dataset
GATT AVGATT Random GATT AVGATT Random
Apc | 0.8468/0.1040 0.1764/0.0121 -0.0056/-0.0036 | 0.8642/0.1696 0.0967/0.0168 0.0045/0.0045
Cora Axg | 0.7112/0.0930 0.1526/0.0100 -0.0076/0.0019 0.7690/0.1664 0.0859/0.0186 0.0040/0.0037
Ap || 0.9755/0.9623 0.7251/0.6226 0.4389/0.4891 0.9875/0.9966 0.7075/0.8897 0.5235/0.6107
Apc || 0.8516/0.0658 0.3096/0.0180 0.0012/-0.0043 0.8711/0.0432 0.2110/0.0107 -0.0073/-0.0034
Citeseer Ang | 0.7653/0.0700 0.2780/0.0186 0.0021/0.0019 0.8291/0.0551 0.2006/0.0140 0.0015/0.0025
Ap || 0.9846/0.9771 0.9213/0.9510 0.3695/0.4258 0.9920/0.9961 0.8979/0.9692 0.4039/0.7569
Apc | 0.8812/0.0631 0.1648/0.0126 -0.0064/0.0021 0.8489/0.0367 0.0592/0.0023 0.0015/-0.0016
Pubmed Axe | 0.8201/0.0915 0.1477/0.0169 -0.0068/0.0078 0.8612/0.0484 0.0600/0.0028 0.0009/-0.0015
Ap || 0.9915/0.9972 0.8834/0.9361 0.3974/0.1327 0.9993/0.9996 0.8932/0.9153 0.5172/0.5242
Apc | 0.7790/0.0546 0.0794/-0.0593 0.0007/0.0028 0.7721/0.0508 0.0465/-0.0252 -0.0004/-0.0003
Arxiv Ang | 0.8287/0.0164 0.0804/-0.0390 0.0016/-0.0067 §| 0.8282/-0.0012 0.0478/-0.0216 -0.0017/0.0000
Ap || 0.9908/0.8995 0.8470/0.2560 0.4962/0.5107 0.9985/0.9366 0.8331/0.3934 0.5004/0.5034
Apc || 0.8089/0.2660 0.3391/0.0209 -0.0284/0.0421 0.7173/0.0899 0.3065/-0.0512 -0.0273/-0.0129
Cornell Axe | 0.7820/0.1526 0.3199/-0.0488 -0.0231/0.0235 0.7160/0.0520 0.3491/-0.0294 -0.0060/-0.0017
Ap || 0.9532/0.8372 0.7416/0.5130 0.5074/0.5660 0.9270/0.6406 0.6907/0.3969 0.4787/0.4953
Apc || 0.7818/0.0801 0.3676/-0.0406 -0.0762/0.0025 0.6866/0.1504 0.2443/0.0486 0.0414/0.0040
Texas Axg | 0.7977/0.1443 0.3809/0.1478 -0.0659/0.0145 0.6132/0.0896 0.1645/0.0579 0.0202/0.0149
Ap || 0.8726/0.7299 0.6803/0.3669 0.4733/0.5198 0.9197/0.8195 0.7072/0.5565 () 524
Apc | 0.6898/0.1751 0.2649/0.0556 0.0596/0.0120 0.7616/0.032 X
Wisconsin  Axg || 0.6421/0.1554 0.2340/0.0636 0.0414/0.0157 0.7409/0.0243 0.0010/0.0400
Ap | 0.8985/0.8501 0.7067/0.6060 0.5427/0.5006 0.8982/0.7582 0.6906/0.3980 0.5119/0.5333

« We compared our method against the naive baseline where the attention marices are averaged across
layers (i.e., AvgAtt, see left figure)

* All results show our method (GAtt) outperforms all baselines in all 7 datasets on GAT (Velickovic et al.,
2017), GATv2 (Brody et al., 2022), and SuperGAT (Kim et al., 2021) (shown in paper).

Velickovic et al., “Graph Attention Networks”, ICLR 2018
Brody et al., “How Attentive are Graph Attention Networks?”, ICLR 2022
Kim et al., “How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision”, ICLR 2021



Experimental results (Accuracy)

Accuracy experiments on real-world datasets shows the superiority of our method

Naive attention-

based baseline Although a different category, we expanded the list of baselines to

include 7 other non-attention-based XAl methods

Higher the petter! Ours \l/ { \ \
Model Dataset GATT AVGATT SA GB I1G GNNEx PGEx GM FDnX

BA-Shapes = 0.9591 0.7977 09563 0.6231 0.6231 0.8916  0.8289 0.5316 0.9917  0.4975
Infection 0.9976 0.8786  0.8237 0.8949 09472 09272 0.7173 0.6859 0.6574  0.4811

BA-Shapes = 0.9617 0.7876  0.9626 0.5260 0.5232 09318 0.5000 0.5123 09923 0.4976
Infection 0.8628 04719 0.7711 0.7250 0.7849 0.7611 0.8178 0.5355 0.5059  0.5002

Random

GAT

GATVv2

All results show our method (GALtt) outperforms all 9 baselines in terms of explanation accuracy.

Short description of other XAl methods

SA (Saliency): Gradient-based explanation (Simonyan et al., 2014)

GB (Guided Backpropagation): Propagate output signals back to the input according to model activations (Springenberg et al., 2015)
IG (Integrated Gradients): Numerical integration of gradients from a baseline to the actual input (Sundararajen et al., 2017)

GNNEx (GNNExplainer): Optimize edge masks using a mutual-information based loss function with gradient descent (Ying et al., 2019)
PGEx (PGExplainer): Train a neural network using the loss function from GNNExplainer (Luo et al., 2020)

GM (GraphMask): Train a classifier that masks certain messages in the GNN that does not change the output (Schlichtkrull et al., 2021)
FDnX (FastDnX): Train a simpler surrogate GNN, and use that GNN for explanation (Pereira et al., 2021)



Experimental results (Visualizations)

Case study reveals the model highlights ground-truth explanations when using GAtt
(Infection dataset)

Ground-truth explanation Ours (GAtt) Baseline
Input graph (Infection path)
O O O
O O @ O
O © O
O O
O O
O O O
_ B
O Target node —— Infection path O.lo 0.2 0.4 0.6 0.8 1.0




Takeaways

1. Understanding explainable Al
1. Why? Black-box nature, serious application, model debugging
2. Types of XAl: Attribution is the basic form of explanation (with a touch of Mech. Interp. + Shapley)

2. Extension to graph learning: The basic concepts can naturally be extended to graphs

3. Subtopic: Can we explain GNNs with attention? (Yes, but with some additional effort of course)



Thank you!

Please feel free to ask any questions :)
Jjordan/186.github.io
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